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Blue Print for Future Applications
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Starting Point: 
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Responsiveness 
!

always available 
interactive 

(near) real-time
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do work

fail fast
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Use Bounded Queues:	

!

Latency = QueueLength • ProcessingTime	

!

(for reasonably stable average processing time)
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Resilience 
!

Responsive in the Face of Failure



Handle Failure

• software will fail 
• hardware will fail 
• humans will fail 
• system still needs to respond ➟ resilience
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Distribute!
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• parallel fan-out & distribution 
 ➟ asynchronous execution
• compartmentalization & isolation
• no response? ➟ timeout events
• someone else’s exception? ➟ supervision

Asynchronous Failure
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• parallel fan-out & distribution 
 ➟ asynchronous execution
• compartmentalization & isolation
• no response? ➟ timeout events
• someone else’s exception? ➟ supervision
• location transparency ➟ seamless resilience

Asynchronous Failure
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Scalability 
!

Responsive in the Face of Changing Load



Handle Load
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Handle Load

• partition incoming work for distribution 
• share nothing 
• scale capacity up and down on demand 
• supervise and adapt 
• location transparency 

 ➟ seamless scalability
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… this has some interesting consequences!



Consequences

• distribution & scalability 
 ➟ loss of strong consistency 
• CAP theorem? — not as relevant as you think 
• eventual consistency 

 ➟ gossip, heartbeats, dissemination of change 
!

Pat Helland: Life beyond Distributed Transactions 

Peter Bailis: Probabilistically Bounded Staleness (http://pbs.cs.berkeley.edu)
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Corollary 

• Reactive needs to be applied all the way down 
• Polyglot deployments demand collaboration 

 ➟ for example http://reactive-streams.org/
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But what about us, 
the developers?



Step 1: Take a Leap of Faith

• thread-based models have made us defensive 
• “don’t let go of your thread!” 
• “asynchrony is suspicious” 
• “better return strict value, even if that needs blocking”

19



Step 1: Take a Leap of Faith

• thread-based models have made us defensive 
• “don’t let go of your thread!” 
• “asynchrony is suspicious” 
• “better return strict value, even if that needs blocking”

• it is okay to write a method that returns a Future!
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Step 2: Rethink the Architecture

• break out of the synchronous blocking prison 
• focus on communication & protocols 
• asynchronous program flow 

 ➟ no step-through debugging 
 ➟ tracing and monitoring 
• loose coupling
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Step 3: Profit!

• clean business logic, separate from failure 
handling
• distributable units of work
• effortless parallelization
• less assumptions ➟ lower maintenance cost
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Step 3: Profit!

• clean business logic, separate from failure 
handling
• distributable units of work
• effortless parallelization
• less assumptions ➟ lower maintenance cost
• independent agents ➟ fun to work with!
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Summary
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