
Dr. Roland Kuhn 
Akka Tech Lead 
@rolandkuhn

Go Reactive

Blue Print for Future Applications



Reactive	  Applications

The Four Reactive Traits

2

http://reactivemanifesto.org/

http://reactivemanifesto.org/


Starting Point: 
The User



browserThe User



browser frontend	

server

internal	

service

internal	

service storage

DB

external	

service



Responsiveness 
!

always available 
interactive 

(near) real-time



Bounded Latency

6



Bounded Latency

• fan-out in parallel and aggregate

6



Bounded Latency

• fan-out in parallel and aggregate

6

A CB



Bounded Latency

• fan-out in parallel and aggregate

6

A

C

B



Bounded Latency

• fan-out in parallel and aggregate

6

A

C

B

e



Bounded Latency

• fan-out in parallel and aggregate 
• use circuit breakers for graceful degradation

7



Bounded Latency

• fan-out in parallel and aggregate 
• use circuit breakers for graceful degradation

7

do work

fail fast



Bounded Latency

• fan-out in parallel and aggregate 
• use circuit breakers for graceful degradation 
• use bounded queues, measure flow rates

8



Bounded Latency

• fan-out in parallel and aggregate 
• use circuit breakers for graceful degradation 
• use bounded queues, measure flow rates

8

Use Bounded Queues:	

!

Latency = QueueLength • ProcessingTime	

!

(for reasonably stable average processing time)



Bounded Latency

• fan-out in parallel and aggregate 
• use circuit breakers for graceful degradation 
• use bounded queues, measure flow rates

8

Use Bounded Queues:	

!

Latency = QueueLength • ProcessingTime	

!

(for reasonably stable average processing time)

e



Resilience 
!

Responsive in the Face of Failure



Handle Failure

• software will fail 
• hardware will fail 
• humans will fail 
• system still needs to respond ➟ resilience

10



Distribute!

11



• parallel fan-out & distribution 
 ➟ asynchronous execution
• compartmentalization & isolation
• no response? ➟ timeout events
• someone else’s exception? ➟ supervision

Asynchronous Failure

12



• parallel fan-out & distribution 
 ➟ asynchronous execution
• compartmentalization & isolation
• no response? ➟ timeout events
• someone else’s exception? ➟ supervision

Asynchronous Failure

12



• parallel fan-out & distribution 
 ➟ asynchronous execution
• compartmentalization & isolation
• no response? ➟ timeout events
• someone else’s exception? ➟ supervision

Asynchronous Failure

12

Request

Response

Failure



• parallel fan-out & distribution 
 ➟ asynchronous execution
• compartmentalization & isolation
• no response? ➟ timeout events
• someone else’s exception? ➟ supervision

Asynchronous Failure

12

Request

Response

Failure

eve
nt-d
rive
n



• parallel fan-out & distribution 
 ➟ asynchronous execution
• compartmentalization & isolation
• no response? ➟ timeout events
• someone else’s exception? ➟ supervision
• location transparency ➟ seamless resilience

Asynchronous Failure

12



Scalability 
!

Responsive in the Face of Changing Load



Handle Load

14



Handle Load

14



Handle Load

• partition incoming work for distribution 
• share nothing 
• scale capacity up and down on demand 
• supervise and adapt 
• location transparency 

 ➟ seamless scalability

14



Handle Load

• partition incoming work for distribution 
• share nothing 
• scale capacity up and down on demand 
• supervise and adapt 
• location transparency 

 ➟ seamless scalability

14

e



… this has some interesting consequences!



Consequences

• distribution & scalability 
 ➟ loss of strong consistency 
• CAP theorem? — not as relevant as you think 
• eventual consistency 

 ➟ gossip, heartbeats, dissemination of change 
!

Pat Helland: Life beyond Distributed Transactions 

Peter Bailis: Probabilistically Bounded Staleness (http://pbs.cs.berkeley.edu)

16

http://pbs.cs.berkeley.edu/


Consequences

• distribution & scalability 
 ➟ loss of strong consistency 
• CAP theorem? — not as relevant as you think 
• eventual consistency 

 ➟ gossip, heartbeats, dissemination of change 
!

Pat Helland: Life beyond Distributed Transactions 

Peter Bailis: Probabilistically Bounded Staleness (http://pbs.cs.berkeley.edu)

16

e

http://pbs.cs.berkeley.edu/


Corollary 

• Reactive needs to be applied all the way down 
• Polyglot deployments demand collaboration 

 ➟ for example http://reactive-streams.org/

17

http://reactive-streams.org/


But what about us, 
the developers?



Step 1: Take a Leap of Faith

• thread-based models have made us defensive 
• “don’t let go of your thread!” 
• “asynchrony is suspicious” 
• “better return strict value, even if that needs blocking”

19



Step 1: Take a Leap of Faith

• thread-based models have made us defensive 
• “don’t let go of your thread!” 
• “asynchrony is suspicious” 
• “better return strict value, even if that needs blocking”

• it is okay to write a method that returns a Future!

19



Step 2: Rethink the Architecture

• break out of the synchronous blocking prison 
• focus on communication & protocols 
• asynchronous program flow 

 ➟ no step-through debugging 
 ➟ tracing and monitoring 
• loose coupling

20



Step 3: Profit!

• clean business logic, separate from failure 
handling
• distributable units of work
• effortless parallelization
• less assumptions ➟ lower maintenance cost

21



Step 3: Profit!

• clean business logic, separate from failure 
handling
• distributable units of work
• effortless parallelization
• less assumptions ➟ lower maintenance cost
• independent agents ➟ fun to work with!

21



Summary



Reactive	  Applications

The Four Reactive Traits

23

http://reactivemanifesto.org/

http://reactivemanifesto.org/


©Typesafe 2014 – All Rights Reserved


