
Platinum Sponsor

EFFECTIVE REFACTORING
Włodek Krakowski

A few words about myself

•Master’s degree in Computer Science
(2001)

•13 + years of experience, observing
things and improving them 

•Sabre : Junior -> ... -> Team Lead

•Lumesse : Application Architect

2 Włodzimierz Krakowski 2014

A few words about myself

Here is the place where I currently introduce my refactoring ideas...

Włodzimierz Krakowski 2014 3

What these stories are about?

•Centuries ago ...

•Many years ago ...

•Nowadays...

4 Włodzimierz Krakowski 2014

Centuries ago...

•Once upon a time there were a farmer
and his goose…

•One day he noticed that his goose laid
down a golden egg…

•Since that day happy & rich life was
going on…

5 Włodzimierz Krakowski 2014

Centuries ago...

•But after some time the farmer became
very greedy & impatient…

•… and finally he decided to kill the
goose in order to get all of the gold
from inside at once...

6 Włodzimierz Krakowski 2014

Centuries ago...

•Surprisingly opposite to his thoughts
there was no gold inside the goose at
all…

•What does the golden egg refer to?

•What does the goose refer to?

7 Włodzimierz Krakowski 2014

Production and Production Capability
cannot be considered a separated items

8 Włodzimierz Krakowski 2014

What is effectiveness?

• At first glance it looks like the
effectiveness seems to be amount/size
of today’s production

• But diligent leadership and
management needs to consider the
future as well

9 Włodzimierz Krakowski 2014

Full picture of effectiveness

• At a bigger picture Effectiveness is

not only the amount of things being

produced today but also ability to

continue the production tomorrow

• Therefore there must be a balance
between today and tomorrow

10 Włodzimierz Krakowski 2014

Many years ago...
Let’s imagine you are working in a factory...

11 Włodzimierz Krakowski 2014

Many years ago...

FACTS

• Any machine can be working very well without any
maintenance for some time

• Any machine can be even the best for a while
(because when the other machines are being
maintained it can be is still working…)

12 Włodzimierz Krakowski 2014

Many years ago...
CONTEST FOR EMPLOYEES :

The one who will produce that biggest amount of the items is the winner

13 Włodzimierz Krakowski 2014

Many years ago...

WINNER OF THE CONTEST WAS...

... engineer who was running his machine 24/7 without any maintanance...

14 Włodzimierz Krakowski 2014

Many years ago...

• Later YOU as new (promoted) owner
becomes responsible for such a “best”
machine that „won” the contest

• But it breaks more and more often…

• Finally it needs to be replaced with a
new one… what is more expensive that all
savings “achieved” by lack of continues
maintenance in the past

15 Włodzimierz Krakowski 2014

Production and Production Capability
cannot be considered a separated items

16 Włodzimierz Krakowski 2014

NOWADAYS
Is there any difference in our industry?

17 Włodzimierz Krakowski 2014

What is a good product in software
development?

• Software that is working as expected and
solves business problems

• Clients can use it efficiently

• The number of functionality defects is
low

• Software is scalable if the number of
input data grows

• The revenue taken is bigger then cost of
building it

• …

18 Włodzimierz Krakowski 2014

What is production capability in
software development?

• Fact : Software very rarely stays as it is

• The ability to extend the software, fix the defects is
purely related to its technical state
– Readability

– Testability

– Reusability

– Complexity

– Design

– Maintainability

– Extendibility

– Performance

• Production capacity is ability to continue working
with the existing software.

19 Włodzimierz Krakowski 2014

What is production capability in
software development?

• Second part of production capacity is developer’s
– Knowledge

– Skills

– Desire to grow

20 Włodzimierz Krakowski 2014

Production and production capibility needs to grow together

Włodzimierz Krakowski 2014 21

Principle of balance

Balance in software development
Refactoring is a technique that can allow you to keep the

balance when working in software industry

22 Włodzimierz Krakowski 2014

What is correct definition of
“refactoring”?

Is it only “changing code structure without changing its behavior”?

23 Włodzimierz Krakowski 2014

Refactoring definition

• Code refactoring is a "disciplined technique for
restructuring an existing body of code, altering its
internal structure without changing its external
behavior", undertaken in order to improve some of
the nonfunctional attributes of the software.

• Refactoring is not
– New functionality
– Fixing bugs

• Although it
– follows them or
– proceeds them

24 Włodzimierz Krakowski 2014

What are non-functional
attributes of software?

25 Włodzimierz Krakowski 2014

When do we refactor?

26 Włodzimierz Krakowski 2014

3 Books

It’s like
Encyclopedia...

Turns it into
Use cases....

Presents

End to end flow

27 Włodzimierz Krakowski 2014

A very simple refactoring...

Before After

Włodzimierz Krakowski 2014 28

Pyramid of Refactoring

…

Architecture

Design
Patterns

S.O.L.I.D.

Extract methods
Create Compose Methods

Readable Code : formatting,
clear names, simplyfied conditions,
clear intent, clear steps of process

Le
ve

ls
 o

f
ab

st
ra

ct
io

n

29 Włodzimierz Krakowski 2014

Pyramid of Refactoring

30 Włodzimierz Krakowski 2014

Why is it better to have smaller pieces?

SMALLER SMALLER SMALLER SMALLER SMALLER SMALLER

at least up to some point it is :

• Easier to read

• Easier to understand

• Easier to divide into
related parts / groups

• Easier to move to other classes

• Easier to test

• Easier to reuse !!!

31 Włodzimierz Krakowski 2014

Code segregation vs. garbage
segregation

It might seem funny to compare them…
32 Włodzimierz Krakowski 2014

When to stop : once Simple Design is
achieved

1. Passes all of the tests.

2. Communicates the programmer's intentions, i.e., has good
names for every important concept.

3. Expresses everything once and only once, i.e., it duplicates
no code or logic or knowledge.

4. Includes nothing that's unnecessary.

33 Włodzimierz Krakowski 2014

Brainstorming…

What to do to make refactoring happen every
day in my team?

34 Włodzimierz Krakowski 2014

Answers...
• We need agreement from management

• We need code Reviews

• Clients must understand it

• It must become part of stories

• There must be time

• There must be knowledge

• Tests are needed

• We need to prioritize it

• The architect needs to decide ...

•

• How poor we are... (!!!)
35 Włodzimierz Krakowski 2014

Were these results usefull?

What to do to make refactoring happen every
day in my team?

What is wrong with this question?

36 Włodzimierz Krakowski 2014

How to take care of effectiveness?

It is not a book about developing software but …

37 Włodzimierz Krakowski 2014

Habit 1: Be Proactive

• The are two options
– Be proactive – you are/become the leader

of the change

– Be reactive - you need to follow behind / adjust
to the change

• Therefore using refactoring
– You can be driver of the change

– Or you have to accept what is going on
(e.g. there is no refactoring at all in the team)

• Be part of the solution – not part of the problem

38 Włodzimierz Krakowski 2014

Laugh at it and live with it

You get rid of responsibility

Habit 1: Be Proactive

Laugh at it but also take action to
solve the problem

You take the responsibility

39 Włodzimierz Krakowski 2014

Habit 1: Be Proactive

There are always things we can influence…

So start from small refactorings in your daily code!

40 Włodzimierz Krakowski 2014

Pyramid of Refactoring again!

41 Włodzimierz Krakowski 2014

Why aren’t we proactive?
The role of the victim role sounds

better?
„It’s not me, it’s the team”

We don’t believe in step by step
approach... And therefore do not
even take the first step !!!

Włodzimierz Krakowski 2014 42

Why aren’t we proactive?
Maybe we prefer even not to try to avoid failure...

Isn’t it always safe to say „We as a team failed... Shame on us”

Włodzimierz Krakowski 2014 43

Habit 2: Begin with the End in Mind

• Improvements and inventions are usually
created twice
– First time in your mind (leadership)

– Second time in reality (management)

• Whenever you want to achieve
something answer the questions :

– What is my goal?

– Why I should do this?

– How will I do this?

• Be aware of the difference between
leadership and management

44 Włodzimierz Krakowski 2014

Habit 2: Begin with the End in Mind

What do you want to do?

• Keep the code at one level of abstraction?

• Keep things separated in different classes?

• Replace conditionals with Strategy Design Pattern?

• Replace conditionals with Polymorphism /
Subclasses?

• Get rid of duplication?

45 Włodzimierz Krakowski 2014

Habit 2: Begin with the End in Mind

Why do you want to do this particular code
transformation?

• Readability
– So we save a lot of time

• Extendibility
– We we add new functionality

• Testability
– We can can be sure about our solution

• Performance gain
– So our clients are not frustrated

• …

46 Włodzimierz Krakowski 2014

Habit 2: Begin with the End in Mind

How are you going to do this?
• Automated refactorings from IDE (IntelliJ/Eclipse)

• Small steps

• Two simultaneous solutions for a while?

How do you know you are on track?

• Do you have test coverage?

How will you know you are done?

47 Włodzimierz Krakowski 2014

Leadership vs Management

There is a natural relation between

patterns and refactorings.

DESIGN PATTERNS are where you want to be,

REFACTORINGS are ways to get there from somewhere else.

- Martin Fowler

48 Włodzimierz Krakowski 2014

Pyramid of Refactoring again!

49 Włodzimierz Krakowski 2014

Find Your Own Motivator
in order to answer these questions

You need to be driven by yourself from inside

50 Włodzimierz Krakowski 2014

Refactoring strategies

Make everything as simple as possible, but not simpler.
Albert Einstein

• Refactor to understand

• Separate things that change
from things that don’t change

51 Włodzimierz Krakowski 2014

Refactoring strategies

Don’t reinvent the wheel

Heuristics for quickly finding
where/what code that should be
refactored – Code Smells

• Code duplication

• Long methods

• Large classes

• Data clumps

• Primitive obsession

• Shotgun surgery

• Alternative classes with different
interfaces

• …

52 Włodzimierz Krakowski 2014

Common perception of tasks to do

Włodzimierz Krakowski 2014 53

Habit 3: Put First Things First
(importance before urgency)

How do we spend time?

54 Włodzimierz Krakowski 2014

Habit 3: Put First Things First
(importance before urgency)

What happens if we do not spent time on prevention?

55 Włodzimierz Krakowski 2014

Habit 3: Put First Things First
(importance before urgency)

What each quadrant symbolizes?

56 Włodzimierz Krakowski 2014

Habit 3: Put First Things First
(importance before urgency)

Time for refactoring comes only it is treated as important item

57 Włodzimierz Krakowski 2014

Habit 3: Put First Things First
(importance before urgency)

• Do we have to find the time for refactoring?
– It is not about finding time.

• Do we need to have permission (e.g. from manager) to do the
refactoring?
– Usually it is not about any permission especially if it is everyday practice…

• What is TDD?
– Test

– Code

– Refactor

• Are we doing full cycle of TDD?

• How to “find” time for refactoring?
– Treat it as important item

58 Włodzimierz Krakowski 2014

Pyramid of Refactoring again!

59 Włodzimierz Krakowski 2014

Why don’t we focus on important?
Additional IF is urgent and

important ...
But refactoring is only

IMPORTANT...

Włodzimierz Krakowski 2014 60

Refactoring strategies

Choose the most appropriate time for refactoring

• Extend then refactor

• Refactor then extend

• Debug/fix then refactor

• Refactor then debug/fix

61 Włodzimierz Krakowski 2014

Habit 4: Think Win-Win

What is the problem with competition?

Somebody must lose in order for
somebody to win...

62 Włodzimierz Krakowski 2014

Habit 4: Think Win-Win

How does it relate to refactoring?

There must be a balance.

• One “WIN” refers to business quality

• The other “WIN” refers to technical quality

These two must grow together

Otherwise one or the other side feels to be abused and that
drives into the conflicts and lack of cooperation.

63 Włodzimierz Krakowski 2014

Habit 4: Think Win-Win

• But in case of relations between people / inside teams the
“rat’s race” approach is not working…

64 Włodzimierz Krakowski 2014

Habit 4: Think Win-Win

• What is TDD (again)?
– Test

– Code

– Refactor

• It is nothing less or more then
the win-win strategy between
functional and technical
quality

65 Włodzimierz Krakowski 2014

Habit 4: Think Win-Win –
one more key point

REMEMBER : nobody enforces you to stay if win-win is not possible…

66 Włodzimierz Krakowski 2014

Pyramid of Refactoring again!

67 Włodzimierz Krakowski 2014

Habit 5: Seek First to Understand,
Then to be Understood

Let’s imagine two people
convincing each other who is
right

But what if they focused on listening first

instead of talking first?
68 Włodzimierz Krakowski 2014

Habit 5: Seek First to Understand,
Then to be Understood

Now let’s imagine how each of them feels once they know are have been
understood by the other party…

… after a while they want to
listen to the other person as well
because they feel safe instead of
being attacked

69 Włodzimierz Krakowski 2014

Habit 5: Seek First to Understand,
Then to be Understood

How does it relate to refactoring?

• Do not enforce your solution at the
beginning

• First understand the code, the design, the
needs, the flow before you take any actions

70 Włodzimierz Krakowski 2014

Habit 5: Seek First to Understand,
Then to be Understood

Do not refactor everything that is around you just because
now you think your solution is better and the other
solution’s is worse

71 Włodzimierz Krakowski 2014

Habit 5: Seek First to Understand,
Then to be Understood

But once you understand the others then seek to be understood by
them as well (win-win)

Teach the others how to
refactor in order to improve
your refactoring skills

72 Włodzimierz Krakowski 2014

Pyramid of Refactoring again!

73 Włodzimierz Krakowski 2014

Habit 6: Synergize
•Synergy happens when the whole

system is greater that sum of its
components

•What does it mean in reality?

• It is seeking for 3rd Alternatives

• Maybe not my solution

• Maybe not your solution

• But 3rd solution instead that is better

then any solution each of us thought

separately

74 Włodzimierz Krakowski 2014

Habit 6: Refactoring – each item
synergizes

Clean
Code

READABILIT
Y

TESTABILITY

PERFORMANCE
EXTENDIBILIT

Y

MAINTANAN
CE

75 Włodzimierz Krakowski 2014

Habit 6: Refactoring together is a big
synergy

•Let’s do a code review before refactoring
given code

•Let’s review after the refactoring if it the
improvement is indeed visible

•“No one can write good code at first, but we
can find faults in other’s code really well”
(Venkat Subramaniam)

76 Włodzimierz Krakowski 2014

Pyramid of Refactoring again!

77 Włodzimierz Krakowski 2014

Habit 7: Sharpen the Saw

Do you know the story about a man cutting off a tree with blunt
saw and having no time to sharpen it?

78 Włodzimierz Krakowski 2014

Habit 7: Sharpen the Saw

How does it refer to refactoring then?

But nothing more?
79 Włodzimierz Krakowski 2014

Habit 7: Sharpen the Saw

80 Włodzimierz Krakowski 2014

Habit 7: Sharpen the Saw

81 Włodzimierz Krakowski 2014

Pyramid of Refactoring again!

82 Włodzimierz Krakowski 2014

One more brainstorming…

What I can do refactoring happen every day in
my team?

Isn’t it a better question?

83 Włodzimierz Krakowski 2014

Answers...
• ... Just start doing it

• I can point the places to refactor once I see them

• I will ask/consult with the others dirty code I found

• I will show the refactoring I did yesterday

• I can organize a training to share my skills / knowledge

• I will become a manager and entroduce it 

 • Lead / Teach fellow programmers

• Brown bags

• Watch presentations together

• We are not so poor any
longer (!!!)

84 Włodzimierz Krakowski 2014

7 HABITS OF EFFECTIVE REFACTORING

85 Włodzimierz Krakowski 2014

One more brainstorming…

How seven habits of effective refactoring can help us
achieve the brainstormed ideas?

86 Włodzimierz Krakowski 2014

Answers...

Do It Yourself!!!

BE PROACTIVE 

87 Włodzimierz Krakowski 2014

Make the world around you better all
the time

“Leave the campground cleaner

than you found it”
The Boy Scouts of America

How does it refer to refactoring?

Check-in cleaner code than

you checked it out!

88 Włodzimierz Krakowski 2014

Refactoring must become your habit

What is a habit: it is an action performed repeatedly and automatically,
usually almost without your awareness

It is a merge of knowledge, skills and desire
89 Włodzimierz Krakowski 2014

Keep growing all the time!

You need to experience to understand

You need to collaborate & teach to grow
90 Włodzimierz Krakowski 2014

Thank you!

91 Włodzimierz Krakowski 2014

